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Abstract. Using constituent quark model constraints we calculate the gluon and sea content of pions
solely in terms of their valence density and the known sea and gluon densities of the nucleon. The resulting
small-x predictions for gπ(x, Q2) and q̄π(x, Q2) are unique and parameter free, being entirely due to QCD
dynamics. Similar ideas are applied for calculating the gluon and sea content of kaons which, for our
suggested choice of the kaon’s valence densities, turn out to be identical to the ones of the pion.

1 Introduction

The parton content of the mesons, π, K, ρ, . . ., is not well
known due to the scarce experimental information solely
from Drell-Yan dilepton production processes as compared
to the rich and accurate data which exist for the nucleon
from various different reactions. One can try to improve
the situation by relating the (rather) well known nucle-
onic parton distributions to the poorly known mesonic
ones utilizing a plausible constituent quark description of
the hadrons in which the partons are considered as uni-
versal parts of the constituent quarks [1-3]. This model
was applied recently [4] to predict the pion structure from
the known nucleon structure functions utilizing the con-
stituent wave functions in [1].

As noted in [4], the choice of the constituent wave func-
tions introduces some ambiguity in the prediction of the
pion structure functions from those of the proton. We shall
therefore employ a slightly different approach which elim-
inates the dependence on the constituent wave functions
without sacrificing completely the predictive power of the
model. In Sect. 2 we apply our approach to the pion in
leading order (LO) and next-to-leading order (NLO) of
QCD, while Sect. 3 is devoted to the K meson.

2 The pion structure

Following [1,4], the constituent building blocks of the nu-
cleon and the pion will be denoted by U and D, i.e. p =
UUD, π+ = UD̄, etc., and their distributions within the
proton [pion] will be denoted by Up(x) [Uπ(x)], etc., which
are scale (Q2) independent. Their universal (i.e., hadron
independent) partonic content will be denoted by
vc(x, Q2), gc(x, Q2), and q̄c(x, Q2) representing the va-
lence, gluon, and sea components of the constituent Uh,

Dh distributions, respectively. The usual parton content
of the proton is then given by

up
v = Up ⊗ vc (1a)

dp
v = Dp ⊗ vc (1b)

q̄p = (Up + Dp) ⊗ q̄c (1c)
gp = (Up + Dp) ⊗ gc (1d)

where up
v ≡ up − ūp and dp

v ≡ dp − d̄p are the valence
quark densities, q̄p =

(
ūp + d̄p

)
/2, and ⊗ denotes the

usual convolution which becomes a simple product for the
corresponding Mellin n-moments, henceforth utilized in
our discussion and for our explicit calculations. We rewrite
these equations in Mellin n-moment space as follows:

vp ≡ up
v + dp

v = (Up + Dp) vc (2a)
q̄p = (Up + Dp) q̄c (2b)
gp = (Up + Dp) gc (2c)

with vp = vp(n, Q2) ≡ ∫ 1
0 xn−1

[
up

v(x, Q2)+dp
v(x, Q2)

]
dx,

vc = vc(n, Q2) ≡ ∫ 1
0 xn−1vc(x, Q2)dx, etc., and where we

omit the obvious n and Q2 dependence in vp(n, Q2),
vc(n, Q2), etc., whenever possible. Similarly we obtain for
the pion 1

vπ ≡ uπ+

v + d̄π+

v =
(
Uπ+

+ D̄π+
)

vc (3a)

q̄π =
(
Uπ+

+ D̄π+
)

q̄c (3b)

gπ =
(
Uπ+

+ D̄π+
)

gc (3c)

1 It should be recalled that uπ+

v = d̄π+

v = ūπ−
v = dπ−

v , ūπ+
=

dπ+
= uπ−

= d̄π−
and qπ0

= (qπ+
+ qπ−

)/2. Similarly, uK+

v =
ūK−

v , s̄K+

v = sK−
v and ūK+

= uK−
= dK±

= d̄K±
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with q̄π =
(
ūπ+

+ dπ+
)

/2 and ūπ+
= dπ+

due to the
common neglect of SU(2)flavor breaking effects in the π.
The above equations are conceived to apply at the low
resolution scale Q2 = µ2 (µ2

LO = 0.23 GeV2, µ2
NLO =

0.34 GeV2) of [5] where the strange quark distribution is
considered to be negligible, i.e.,

sp(x, µ2) = s̄p(x, µ2) = 0 . (4)

We shall adopt the same approximation also for the pion,
i.e.,

sπ(x, µ2) = s̄π(x, µ2) = 0 . (5)

Note that in contrast to our previous analysis [6] of the
pion structure, we now start with a non-vanishing sea q̄π

at Q2 = µ2 as follows from (2b) and (3b).
It is easily seen that (2) and (3) yield the following

wave function independent relations

vπ

vp
=

q̄π

q̄p
=

gπ

gp
(6)

which, together with (5), fix the pion structure in terms
of the proton structure as soon as vπ is reasonably well
determined:

gπ =
vπ

vp
gp , q̄π =

vπ

vp
q̄p . (7)

These n-moment relations are our basic predictions for
the gluon and sea densities of the pion at the input scale
Q2 = µ2. The required LO and NLO input densities of the
proton are taken from [5], with q̄p referring to the average
of the ū and d̄ sea densities of [5], i.e., q̄p =

(
ūp + d̄p

)
/2.

Furthermore the sum rules∫ 1

0
vπ(x, Q2) dx = 2 (8)

∫ 1

0
xvπ(x, Q2) dx =

∫ 1

0
xvp(x, Q2) dx (9)

impose strong constraints on vπ(x, µ2) which are very use-
ful for its almost unambiguous determination from experi-
mental Drell-Yan data in πN collisions. Independent anal-
yses of the valence structure of protons and pions within
the framework of the radiative parton model [5,6] suggest
that the valence quarks in the proton and the pion carry
similar total fractional momentum, as implied by (9). In
practice we can therefore utilize the vπ(x, µ2) of [6] slightly
modified so as to comply with the new constraint in (9).
This yields

vπ
LO(x, µ2

LO) = 0.942 x−0.501 (
1 + 0.632

√
x
)

× (1 − x)0.367 (10)
vπ

NLO(x, µ2
NLO) = 1.052 x−0.495 (

1 + 0.357
√

x
)

× (1 − x)0.365
. (11)

The total momentum fractions carried by these LO and
NLO input valence densities are given by

∫ 1

0
xvπ

LO(x, µ2
LO) dx = 0.603 ,

NLO

LO

NLO (GRVπ)

LO (GRVπ)

4xq4xqπ

xvπ

xgπ

Q2 = µ2

x

 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fig. 1. The valence-like input distributions xfπ(x, Q2 = µ2)
with f = v, q̄, g as compared to those of [6] denoted by GRVπ.
Note that GRVπ employs a vanishing SU(3)flavor symmetric
q̄π input. Our present SU(3)flavor broken sea densities refer to
a vanishing sπ input in (5), similarly to GRVπ [6]

∫ 1

0
xvπ

NLO(x, µ2
NLO) dx = 0.582 (12)

which coincide, as they should, with the ones of the proton
[5], cf. (9).

Having completely fixed the input for gπ and q̄π in
(7), we perform the LO and NLO evolutions of gπ(n, Q2)
and q̄π(n, Q2) to Q2 > µ2 in Mellin n-moment space, fol-
lowed by a straightforward numerical Mellin-inversion [7]
to Bjorken-x space for obtaining gπ(x, Q2) and
q̄π(x, Q2). The same is done for sπ, starting from the van-
ishing input in (5). It should be noted that the evolutions
are always performed in the fixed (light) f = 3 flavor fac-
torization scheme [5,8], i.e., we refrain from generating ra-
diatively massless ‘heavy’ quark densities h(x, Q2) where
h = c, b, etc. Hence heavy quark contributions have to
be calculated in fixed-order perturbation theory via, e.g.,
gπgp → hh̄, ūπup → hh̄, etc.

In Fig. 1 we compare our present LO and NLO input
parton distributions at Q2 = µ2 with those of [6], while
Fig. 2 shows our resulting predictions for various larger
fixed values of Q2 as compared again to our [6] former
results denoted by GRVπ. In contrast to our former [6]
SU(3)flavor symmetric sea q̄π, the present one is merely
SU(2)flavor symmetric and q̄π refers now to the quantity
in (3b) while sπ = s̄π is not shown in the figure since it
practically coincides with our previous GRVπ [6] q̄π for
the following reasons: Our unique parameter free small-x
(x . 10−2) predictions for xgπ and xq̄π at Q2 > µ2 in
Fig. 2 are entirely due to QCD dynamics since they are
radiatively generated from the valence-like input densities
at Q2 = µ2 which vanish as x → 0. Thus the results for gπ

and q̄π almost coincide with the ones of [6] except for xq̄π

at x & 10−2 which has been generated from a vanishing
input [6], in contrast to the present analysis. Furthermore
our predictions for sπ, resulting also from the vanishing
input in (5), almost coincide with our previous GRVπ q̄π

shown in Fig. 2.
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Fig. 2. The radiatively generated pionic gluon and sea-quark
distributions at various fixed values of Q2 as compared to those
of [6] denoted by GRVπ. The predictions for the strange sea
density sπ = s̄π are similar to the LO and NLO GRVπ results
for q̄π
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Fig. 3. A detailed comparison of NLO pionic parton dis-
tributions at Q2 = 20GeV2. The stars (SMRS) refer to
the distributions of [9]. It should be noted that our present
q̄π ≡ ūπ+

= dπ+
(solid line), while the GRVπ and SMRS

q̄π ≡ ūπ+
= dπ+

= sπ = s̄π

In Fig. 3 we present a more detailed comparison of our
present (solid lines) and previous NLO [6] results at a
specific value of Q2 = 20 GeV2 where we also show the
corresponding distributions of [9]. Finally our predictions
are confronted in Fig. 4 with a representative sample of
the experimental data [10,9] from the Drell-Yan process
(π−W reactions) as also done in [9,4]. It should be noted
that our NLO K-factors, i.e. K ′, are similar to the ones
obtained in [4,9]. The relevant NLO differential Drell-Yan
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Fig. 4. A comparison of a sample of experimental Drell-Yan
data (π−W reactions) [10,9] with LO and NLO predictions
based on the present pion distributions together with the nu-
cleon distributions of [5]
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Fig. 5. The LO valence distributions of the K+ meson at the
input scale Q2 = µ2 and at Q2 = 20GeV2 as compared to the
corresponding valence distribution of the pion

cross section d2σ/d
√

τdxF has been presented in the Ap-
pendix of [9] except for (A8) which has to be modified [11,
12] in order to conform with the usual MS convention for
the number of gluon polarization states 2(1 − ε) in 4 − 2ε
dimensions.

3 The kaon structure

Here (3a)–(3c) are obviously replaced by 1

vK ≡ uK+

v + s̄K+

v =
(
UK+

+ S̄K+
)

vc (13a)
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q̄K =
(
UK+

+ S̄K+
)

q̄c (13b)

gK =
(
UK+

+ S̄K+
)

gc (13c)

where as in the case of the pion, q̄K ≡ ūK+
= dK+

= d̄K+
,

and for the strange sea input we take again

sK+
= s̄K−

= 0 . (14)

They yield together with (2a)–(2c)

vK

vp
=

ūK+

ūp
=

gK

gp
(15)

just as for the corresponding pion-proton relations in (6).
Thus our basic predictions for the gluon and sea content
of kaons at the input scale Q2 = µ2 in Mellin n-moment
space are

gK =
vK

vp
gp , q̄K =

vK

vp
q̄p (16)

which is analogous to (7). Taking again the input par-
ton densities of the proton from [5], only the total valence
density of the kaon, vK ≡ uK+

v + s̄K+

v , remains to be
fixed. In contrast to the pion, the constituent quarks have
now different masses, i.e., Ms > Mu so that the valence
distribution s̄K+

v is expected to differ from uK+

v in being
somewhat harder: s̄K+

v > uK+

v as x → 1, i.e., the heavier
s̄ in K+ should carry more momentum than the lighter u
(d). Unfortunately, the details of this difference are not yet
explored experimentally nor reliably predictable theoreti-
cally [13-15]. The only experimental information available
concerns uK+

v which derives from the Drell-Yan process
K−p → µ+µ−X at 4.1 GeV ≤ Mµ+µ− ≤ 8.5 GeV [16]. It
indicates that uK+

v < uπ+

v for x > 0.6 or uK+

v /uπ+

v → 1/2
as x → 1 at 〈Q2〉 = 20 − 40 GeV2. This requirement
can be easily accounted for by the ansatz uK+

v (x, µ2) =
Nu(1 − x)κvπ(x, µ2) with κ being fitted to the (scarce)
NA3 data [16] and Nu follows from

∫ 1

0
uK+

v (x, Q2) dx =
∫ 1

0
s̄K+

v (x, Q2) dx = 1 . (17)

In analogy to (9), we have furthermore

∫ 1

0
xvK(x, Q2) dx =

∫ 1

0
xvp(x, Q2) dx

=
∫ 1

0
xvπ(x, Q2) dx . (18)

In view of the absence of any experimental information
about s̄K+

(x, Q2), we take as our input

s̄K+

v (x, µ2) = vπ(x, µ2) − uK+

v (x, µ2) (19)

which satisfies trivially the expectation discussed above
as well as the sum rules (17) and (18). Fitting now our
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Fig. 6. The ratio of the up-quark valence distributions of the
K+ and π+ mesons as compared with the corresponding ex-
perimental NA3 Drell-Yan data [16]

ansatz for uK+

v to the NA3 data [16] yields

uK+

v,LO(x, µ2
LO) = 0.541 (1 − x)0.17vπ

LO(x, µ2
LO) (20)

uK+

v,NLO(x, µ2
NLO) = 0.540 (1 − x)0.17vπ

NLO(x, µ2
NLO) .

(21)

The total momentum fractions carried by these LO and
NLO light valence input densities are∫ 1

0
xuK+

v,LO(x, µ2
LO) dx = 0.276 ,

∫ 1

0
xuK+

v,NLO(x, µ2
NLO) dx = 0.267 . (22)

Therefore the total momentum fractions carried by the
heavy strange input densities are, according to (19) and
(12),

∫ 1

0
xs̄K+

v,LO(x, µ2
LO) dx = 0.327 ,

∫ 1

0
xs̄K+

v,NLO(x, µ2
NLO) dx = 0.315 . (23)

These LO input valence densities as well as the ones
evolved to Q2 = 20 GeV2 are shown in Fig. 5, and uK+

v /

uπ+

v at Q2 = 20 GeV2 is compared with the NA3 data [16]
in Fig. 6. The NLO valence densities are very similar to
the LO ones shown in Fig. 5. Our expectations are simi-
lar to the ones derived from non-relativistic bound state
(potential) and Nambu-Jona-Lasino-type models [13-15].
Due to our ansatz (19), i.e., vK+ ≡ uK+

v + s̄K+

v = vπ+
,

our predictions (16) for gK(x, Q2) and q̄K(x, Q2) become
identical to the ones for the pion in (7), i.e., gK = gπ and
q̄K = q̄π, which are shown in Figs. 1–3. It is thus obvious
that also sK+

= sπ.

4 Discussion

The present approach to the constituent quark model re-
places the previous [4] reliance on theoretically inferred



M. Glück et al.: Mesonic parton densities derived from constituent quark model constraints 163

constituent wave functions [1,4] by experimentally extract-
ed mesonic valence quark distributions. It is shown that
these distributions together with the rather well
known nucleon parton distributions provide all the re-
quired information for predicting the gluon and sea dis-
tributions within a meson. A confrontation with available
experimental data supports the basic correctness of the
underlying constituent quark model and of our approach
to its practical, wave-function independent, implementa-
tion. Future improvements in our knowledge of the nucleon
and meson parton distributions are required to test how
reliable and correct the constituent quark model actually
is.

A Fortran package containing our LO and NLO(MS)
pion densities can be obtained by electronic mail on re-
quest.

The work has been supported in part by the ‘Bundesminis-
terium für Bildung, Wissenschaft, Forschung und Technologie’,
Bonn.
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